Determination of ⁹³Mo (and ⁹⁴Nb) in nuclear decommissioning waste from a nuclear reactor

Szabolcs Osváth, Xiaolin Hou, Per Roos, Jixin Qiao, Nikola Marković

Technical University of Denmark, Center for Nuclear Technologies (DTU Nutech) DTU Risø Campus, Frederiksborgvej 399, 4000 Roskilde, Denmark $f(x+\Delta x)=\sum_{i=1}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(0)}(x)$

RAS academic meeting (23 April 2018) Nutech meeting (26 April 2018) 18th Radiochemical Conference (13-**18 May 2018, Mariánské Lázně)** NKS RadWorkshop (8-12 October 2018, Risø)

DTU Nutech Center for Nukleare Teknologier

A short introduction

- DTU Nutech (Technical University of Denmark, Center for Nuclear Technologies) is the Danish competence center for nuclear technologies.
- The 3 former Danish research reactors were on the campus.
- DTU Nutech (1956-2006 called Risø) has long-term experience on radiochemical analyses of (among others) nuclear waste, especially decommissioning waste.
- ³H, ¹⁴C, ³⁶CI, ⁴¹Ca, ⁵⁵Fe, ⁵⁹Ni, ⁶³Ni, ⁹⁰Sr, ⁹³Mo, ⁹³Zr, ⁹⁴Nb, ⁹⁹Tc, ¹²⁹I, ²¹⁰Po, ²¹⁰Pb, ²²⁶Ra, ²³⁷Np, ²³⁴U, ²³⁵U, ²³⁶U, ²³⁸U, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴¹Am, ²⁴⁴Cm; ⁶⁰Co, ¹⁵²Eu, ¹⁵⁴Eu, ¹³⁴Cs, ¹³⁷Cs.

Samples

- Metals from a NPP (under decommissioning)
 Main radioactive components: ⁶⁰Co (≈ kBq-MBq) + ⁵⁵Fe
 - Induced activity samples
 Small pieces, irradiated by neutrons
 Activation products
 - Surface layer activity samples
 Big pieces, contacted with primary water
 Corrosion products
- Model sample (for method development): NIST Standard Reference Material 123c (Cr-Ni-Nb Stainless Steel; AISI 348)

Metal	m/m %	
Fe	the rest (68.52%)	
Cr	17.40%	
Ni	11.34%	
Mn	1.75%	
Nb	0.65%	
Мо	0.22%	
Со	0.12%	

12.10.2018

Goal

 To develop a new method for determination of ⁹³Mo and ⁹⁴Nb in nuclear power plant decommissioning wastes

⁹³Mo

- $t_{1/2} = (4.0 \pm 0.8) \times 10^3$ years
- Electron capture
- Possibilities for detection:
 - X-ray spectrometry: 16.5 keV (62%) and 18.6 keV (9%) K_a and K_β lines of Nb
 - LSC: Auger-electrons
 - MS: presence of ^{nat}Mo (abundance sensitivity of ⁹²Mo (15%) and ⁹⁴Mo (9%))

⁹⁴Nb

- $t_{1/2} = 2.0 \times 10^4$ years
- $\beta^- \gamma$ emitter ($E_{\beta, max} = 470$ keV)
- Detection by gamma-spectrometry:

703 keV (98%) and 871 keV (100%)

- Radiochemical separation is needed before measurement!
 - ${}^{93}Mo/{}^{60}Co \approx 10^{-5} 10^{-3}$
 - ${}^{93}Mo/{}^{93m}Nb \approx 10^{-5} 10^{2}$
 - ${}^{94}\text{Nb}/{}^{60}\text{Co} \approx 10^{-5} 10^{-3}$

(activity ratios in our samples)

Overview of our method

- Dissolution
- Combined chromatographic separation
 - Cation exchange
 - TEVA
 - Alumina
- Measurements

Detection techniques used in method development:

- Gamma-spectrometry: 60Co, 94Nb, 125Sb; 99mTc
- ICP-OES: stable elements (Fe, Cr, Ni, Mn, Mo, Nb, Zr)
 - Interferences
 - Extra problem: elimination of HF by dilution, evaporation or complexation (H_3BO_3)

Dissolution

- Surface samples: "leaching" of the activity from the surface
- Induced samples: direct dissolution
- Addition of carriers (stable Mo and Nb)
 - ICP-OEC measurement of aliquots taken before and after separation \rightarrow Recovery
- Dissolution and repeated evaporation using aqua regia (68% $\rm HNO_3$ + 36% $\rm HCI$) and 40% $\rm HF$
 - Oxidation to MoO_4^{2-} (+VI, crucial)
 - Green solution: Cr^{3+} , Ni^{2+}
- Dissolution in 0.1 M HF
- Dilution until 0.02 M HF

1. column: Cation exchange resin. Getting rid of the matrix

2. column: TEVA® resin. Separation of anions

Dissolution

Cation exch.

TEVA Mo

Zr

Nb

2. column: TEVA® resin. Separation of anions

Dissolution

Cation exch.

TEVA Mo

Zr

Nb

3. column: Alumina (Al_2O_3) . Purification of Mo

- Widely applied for ^{99m}Tc/⁹⁹Mo separation in "technogenerator"s (using HNO₃ media)
- But practically no information is available about usage of HF media
- Load & rinse: 1 M HNO₃
- Wash: 0.1 M HNO₃ H₂O
 - 0.01 M NH₃
- Mo strip: $\geq 1 \text{ M NH}_3$

Other metals pass mainly through

- In general, results with HNO₃ and HF are similar
- Higher c of $NH_3 \rightarrow$ more effective elution of Mo
- Sb always contaminates the Mo except when cc. NH₃ is used for elution

Reference: Bernhard (1994) J Radioanal Nucl Chem 177(2):321-325

- Load & rinse: ≤0.1 M HF

Wash: H₂O

- Mo strip: $\geq 1 \text{ M NH}_3$

Other metals are retained

Dissolution

Cation exch.

Measurement of ⁹³Mo using LSC

- Evaporated sample (≈450 µL dw) + 20 mL Ultima Gold LLT
- How to calibrate? Remember Per's presentation
- $\eta = 52\%$

Method performance

- Recoveries (model samples):
 - Mo: typically over 85%
 - Nb: typically over 75%
 - Zr: typically over 70%
- Analysis of real samples is in progress
- Decontamination factors:

Separation of Mo				
Element	Cation	TEVA	Alumina	
	exchange	Mo fr.		
Fe	≥ 10 ³	10 ³	≥ 4*10 ²	
Cr	≈2	500	≥ 8*10 ³	
Co	10 ³	104	≥ 10 ²	
Ni	10 ³	104		
Mn	10 ³	104		
Nb	1	5*10 ²	≥ 2*104	
Zr	1	≥ 10	≥ 7*10 ²	
Sb	1	≥ 10 ³	≥ 10 ²	
Tc	1	3*10 ²	4*10 ²	

Separation of Nb				
Element	Cation	TEVA		
	exchange	Nb fr.		
Fe	≥ 10 ³	10 ⁵		
Cr	≈2	10 ³		
Co	10 ³	104		
Ni	10 ³	104		
Mn	10 ³	10 ⁴		
Мо	1	10 ²		
Zr	1	≥ 10 ²		
Sb	1			
Тс	1	10 ³		

Summary. Conclusions and perspectives

- A method for determination of ⁹³Mo (and ⁹⁴Nb) based on combined chromatographic separation - was developed
- Model samples: recoveries and separation factors are satisfying
- Real samples: in some cases very low recoveries maybe Zr saturates the TEVA column? (longer columns should be used)
 - Comparison of results with estimated values (based on modelling)
- Validation by "standard addition" method
- Gamma-spectrometric measurement of ⁹⁴Nb before chemical separation (in the presence of lots of ⁶⁰Co) using an anti-coincidence gammaspectrometer
- Method might be extended for determination of Zr (ICP: recovery, LSC: activity)

Thank you very much

for all your help and kind attention. http://www.nutech.dtu.dk/english

DTU Nutech Center for Nukleare Teknologier

We acquired the 3rd LSC spectrum in the world about ⁹³Mo

12.10.2018

Calibration of LSC for measurement of ⁹³Mo

- No certified ⁹³Mo can be purchased
- "Home-made" solution: Separation of Mo from irradiated Nb
 - Dissolution and repeated evaporation: 40% HF + 68% HNO₃
 - Dissolution in 6 M HF
 - First separation step: Precipitation of $\rm Nb_2O_5$ and co-precipitation on $\rm Fe(OH)_3$ (using $\rm NH_3)$

Based on "the lost method" from Patricia Puech (1998): Détermination des radionucléides zirconium 93 et molybdène 93 dans des effluents de retraitement des combustibles irradiés. Thesis, Univ. Paris XI, 211, France

- Repeated evaporation: 36% HCI + 68% HNO₃
- Repeated evaporation: 40% HF
- Dissolution in 0.1 M HF
- Dilution until 0.05 M HF
- Second separation step: purification on Alumina column
- Performance of separation: Recovery of Mo \approx 60% DF of Nb \geq 10⁶
- Measurement by calibrated X-ray spectrometer
- Measurement by LSC